Math League Press, P.O. Box 17, Tenafly, New Jersey 07670-0017

Information $\mathscr E$ Solutions

Spring, 2013

Directions for Grading

- **Date** You may give this contest any time after April 15. The *Algebra Course* 1 Contest is for use in your own school or district. We've enclosed a registration form for next year. Instructions for optionally submitting results are included on a separate sheet entitled "Using the Score Report Center."
- **Urgent questions?** Write to comments@mathleague.com, or call 1-201-568-6328 or 1-516-365-5656.
- **Scores** Remind students that *this is a contest, and not a test*—there is no "passing" or "failing" score. Few students score as high as 24 points (80% correct); students with half that, 12 points, should be commended!
- **Solutions** Detailed solutions appear in each question box, and letter answers are in the Answers columns on the right. You may copy this solution key and give a copy to every student who took this contest.
- **Awards** The original contest package contained 1 book award (and a bookplate you should affix to the book's inside front cover) for the 1st place student. We also enclosed 5 Certificates of Merit – 1 each for the runner-up on each grade level, plus extras for ties.
- Additional Book Awards & Additional Certificates If you want to give more than 1 book award, you may purchase additional books as described below. Do you need more Certificates of Merit? If so, send your name, school, and school mailing address to our mailer at: Math Certificates, P.O. Box 17, Tenafly, NJ 07670-0017. Include a self-addressed, stamped envelope (2 stamps required) large enough to hold certificates.

The school's top scorer will receive the book Math Contests—High School (Vol. 4). Other high scorers will receive Certificates of Merit. In any one school year, no student may win both a book and a certificate. The book and certificates were in the original contest package.

If needed, duplicate book awards may be ordered as described below.

Eighteen books of past contests, Grades 4, 5, & 6 (Vols. 1, 2, 3, 4, 5, 6), Grades 7 & 8 (Vols. 1, 2, 3, 4, 5, 6), and High School (Vols. 1, 2, 3, 4, 5, 6), are available, for \$12.95 per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

2012-2013 ALGEBRA COURSE 1 CONTEST SOLUTIONS

23. If $(x-2)^2 =$	$1600, x-2 = \pm 40.$	Thus $x = 42$ or -	38, and $x - 4 = 38$ or	r - 42.
A) -42	B) -34	C) 34	D) 36	

Α D) 36

Answers

23.

24.

25.

26.

27.

В

Α

Α

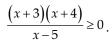
D

D

C

C

29.


30.

- 24. Since the prime factorization of 260 is (2)(2)(5)(13), the least possible value of \hat{x} is 13.
 - A) 10
- B) 13
- C) 26
- D) 30
- 25. Avg. speed = (total dist./total time), so Don Q's avg. speed is (60 + 60)/[60/(3r) + 60/(6r)] =120/(30/r) = 4r.
 - A) 4r
- B) 4.5r
- D) 5.5r
- 26. If the integer is 10t + u, then the difference bebetween this integer and the integer with the digits reversed is (10t + u) - (10u + t) = 9t - 9u =36. Dividing by 9, t - u = 4.
 - A) 4
- B) 6
- D) 9
- 27. My sister has *s* dollars, and I have *d* dollars more than she has. If together we have a total of tdollars, then s + (s + d) = t, so 2s = t - d and s = (t - d)/2.
 - A) t-2d B) $\frac{t}{2}-d$ C) $t-\frac{d}{2}$ D) $\frac{t-d}{2}$

- 28. Choice D is the product of 3 consecutive integers, so it's divisible by 3.
 - A) x(x-3)(x-6) B) x(x+3)(x-3) C) x(x+7)(x-2) D) x(x+1)(x-1)

 - The expression $\frac{2x+1}{3x-3}$ becomes $\frac{2(\frac{4}{x})+1}{3(\frac{4}{x})-3} = \frac{\frac{8}{x}+1}{\frac{12}{x}-3} = \frac{8+x}{12-3x}$.
- A) $\frac{2x+1}{3x-3}$ B) $\frac{3x-3}{2x+1}$ C) $\frac{8+x^2}{12-3x}$

30. The inequality is true if x = -3 or -4. If x < -4 or -3 < x < 5, it is false. If x = 6 or 7, it is true.

My car has 4 passengers.

- A) 2
- B) 3
- C) 4
- D) 5

The end of the contest

Visit our Web site at http://www.mathleague.com

Steven R. Conrad, Daniel Flegler, and Adam Raichel, contest authors

	2012-201.	3 ALGEBRA (COURSE 1 CONT	EST SOLUTIONS	Answers
1. If <i>x</i>	1. If $x = 2013$, then $(x - 2012)^{(x - 2013)} = (2013 - 2012)^{(2013 - 2013)} = 1^0 = 1$.				
A) ()	B) 1	C) 2	D) 10	В
2. If <i>a</i> =	= 5, then 4 <i>a</i> ³	$-3a^2 + 2a - 1$	$= 4(5)^3 - 3(5)^2 + 2$	2(5) - 1 = 500 - 75 + 10 -	1. 2.
A) 3	39	B) 125	C) 434	D) 586	С
3. Fred	and Ginge	r danced for	$\frac{2013}{x}$ hours		3.
last		2013 is not o	• • •	La	С
A) 3	B) 11	C) 13	D) 61		
		$\frac{1}{x}x^2 - 4x - 12$ x + 2 is a fact			4.
	+2 B) x - 2		D) x – 8		A
5. 2 ⁴⁰⁰	$+2^{400} = 2(2^4)$	400) = $(2^1)(2^4)$	$(400) = 2^{400+1} = 2$	401.	5.
A) 2	401	B) 2 ⁸⁰⁰	C) 4 ⁴⁰⁰	D) 4 ⁸⁰⁰	A
, ₁₆ p	_ 2 than	-p2 _	2		6.
6. II — q	$=\frac{1}{3}$, then	$\frac{-p}{-q} = \frac{-2}{-3} =$	3.		D
A) -	$-\frac{2}{3}$	B) $\frac{-2}{3}$	C) $\frac{2}{-3}$	D) $\frac{2}{3}$	
7. The resp	number of sectively. He	5 kg weight nce, 5(4w)+	s and $10 \text{ kg weight} = 10(2w) = 200$, so	ghts I have is $4w$ and $2w$ 40w = 200 and $w = 5$.	v, 7. B
A) 4	Į.	B) 5	C) 10	D) 20	
8. $(3x^3 - 6x^3 - 6x^$	$-4x^2$) + (2 x^2 –	$3x) - (3x^3 - 4)$	$= 3x^3 - 4x^2 + 2x^2$	$-3x - 3x^3 + 4 = -2x^2 - 3x +$	4. 8.
A) 2	$2x^2 - 3x - 4$	B) $2x^2 - 3$	$x + 4$ C) $-2x^2$	$-3x-4$ D) $-2x^2-3x+$	4 D
9. Sinc	e 3x + 10 =	(3x - 4) + 14	4, 3x + 10 is odd.	(Odd # + 14 = odd #.)	9.
A) _]	oositive	B) prime	C) odd	D) even	С
		hone rang a		15/11/G	10.
rang ring	50 times be s are 20% of	time it rang efore 4 PM. f all the ring 250 times yo	Those 50 s. Thus,	1 PIN	
A) 2	200 B)	250 C)	300 D) 400	0	
				-6, $t-8$. Then $t + (t-2)= 4440, and t = 892.$) + 11. D
A) 8	384	B) 888	C) 890	D) 892	

	2012-2013 ALGEBRA COURSE 1 CONTEST SOLUTIONS	Answ
12.	A line that passes through the points (p, q) and $(2p, 3q)$ has slope $(3q-q)/(2p-p) = 2q/p$. The slope between (p, q) and $(3p, 5q)$ is also $2q/p$.	12.
	A) $(3p, 4q)$ B) $(3p, 5q)$ C) $(4p, 6q)$ D) $(4p, 8q)$	l I
13	The multiples of 3 between -9 and 12 include 0, so their product is 0.	13.
10.	A) -314928 B) -2916 C) 0 D) 2916	15.
1.4	, , , , , , , , , , , , , , , , , , , ,	14.
14.	Of children born at the maternity ward yesterday, the ratio of boys to girls was $3x:4y = 5:6$.	14.
	Thus, $18x = 20y$ or $9x = 10y$. Hence, $x:y = 10:9$.	1
	A) 10:9 B) 24:15 C) 15:24 D) 4:5	
	$\frac{\left(x^{200}\right)^{400}}{\left(x^{100}\right)^{200}} = \frac{x^{80000}}{x^{20000}} = x^{60000}.$	15.
15.	$\frac{(x^2)^{\frac{1}{20000}}}{x^{\frac{1}{20000}}} = x^{\frac{1}{20000}} = x^{\frac{1}{20000}}$	
	$(x^{100})^{200}$ x^{20000}	I
4.6	A) x^4 B) x^6 C) x^{40000} D) x^{60000}	
16.	If the average of x , y , and z is 16, their sum is $3(16) = 48$. If the average of x and y is 12, their sum is $2(12) = 24$. Hence $z = 48 - 24 = 24$.	16.
	A) 4 B) 14 C) 20 D) 24]
17	Both $6n^8$ and $10n^{12}$ are factors of $30n^{12}$, the lcm.	4.77
17.		17.
	A) $2n^8$ B) $30n^{12}$ C) $30n^{24}$ D) $60n^{96}$	
18.	If the perim. is 64, each side has length 16. By Pythag. Th., a diameter is $16\sqrt{2}$. The area is $(8\sqrt{2})^2\pi = 128\pi$.	18.
	A) 16π B) 32π C) 64π D) 128π	I
19.	Since $(x - y)^2 = 3^2$, $x^2 + y^2 - 2xy = 9$. Hence $485 - 2xy = 9$, and $xy = 238$.	19.
	A) 162 B) 238 C) 482 D) 3880	-
20.	The roots of $(x-1)(x+2)(x-3) \times \times (x-19)(x+20)(x-21) = 0$ are 1, -2, 3, -4,, 19,	20.
	-20, and 21. Their sum is $(1-2)+(3-4)+$	I
	+(19-20)+21=-10+21=11.	
	A) 10 B) 11 C) 21 D) 31	<u></u>
21.	4x + 4 -x = 4 x + 4 x = 8 x .	21.
	A) 0 B) 8 C) $8 x $ D) $4 4x $	(
	$\sqrt{36^{64}} = \sqrt{\left(36^{32}\right)\left(36^{32}\right)} = 36^{32}.$	22.
22.	$\sqrt{30} = \sqrt{30^{\circ}/30^{\circ}} = 30^{\circ}.$	I
	A) 6 ⁸ B) 6 ³² C) 36 ⁸ D) 36 ³²	1 -