	M A HIG	h school	MATHEMATIC	S CONTESTS
Cor	Math All official partici	League Press, P.C pants must tak	Box 17, Tenafly, New e this contest at the d is allowed. Answers	Jersey 07670-0017 le same time. ember 13, 2012
Nam	Name Grade Lev		Grade Level	Score
Time	e Limit: 30 minutes N	EXT CONTEST: DE	c. 11, 2012	Answer Column
2-1.	What is the largest prime diviso identical non-zero digits?	or of every 3-digi	t number with 3	2-1.
2-2.	If 3 adult bears ate an average of 16 hot dogs each, and 2 bear cub ate an average of 6 hot dogs each then (for these 5 bears) what wa the average number of hot dog eaten per bear?	of os n, as ss		2-2.
2-3.	A semicircle is tangent to both right triangle and has its center hypotenuse. The hypotenuse is ed into 4 segments, with lengths and x , as shown. What is the value of the triangle of triangle of the triangle of tria	legs of a er on the partition- 3, 12, 12, lue of x? $3 1$		2-3.
2-4.	What are all 3 ordered triples of for which $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1$?	integers (a,b,c), w	$ith \ 0 < a \le b \le c,$	2-4.
2-5.	A distribution consists of the inte such that the frequency of each an of this distribution?	egers from 1 throu integer <i>n</i> is 2^{n-1} .	igh 100, inclusive, What is the medi-	2-5.
2-6.	If S is a 2012×2012 square split ir a diagonal of S will pass throug 2012 unit squares. If R is a 2012 split into unit squares, a diagon through the interior of how man	nto unit squares, h the interior of \times 2015 rectangle al of R will pass ny unit squares?		2-6.

Eighteen books of past contests, *Grades 4, 5, & 6 (Vols. 1, 2, 3, 4, 5, 6)*, *Grades 7 & 8 (Vols. 1, 2, 3, 4, 5, 6)*, and *HS (Vols. 1, 2, 3, 4, 5, 6)*, are available, for \$12.95 each volume (\$15.95 Canadian), from Math League Press, PO. Box 17, Tenafly, NJ 07670-0017.

Contest # 2

Answers & Solutions

11/13/12

Problem 2-1

Every such 3-digit number *ddd* can be written as $d \times 111 = d \times 3 \times 37$. Since *d* is a digit, $1 \le d \le 9$, so the largest prime divisor is $\boxed{37}$.

Problem 2-2

The average of 5 numbers is their sum divided by 5. Since the sum of these 5 numbers is (16+16+16) + (6+6) = 60, their average is $60/5 = \boxed{12}$.

Problem 2-3

The two small right \triangle s are similar to each other (and the large right \triangle). A radius of the circle is 12. Thus the longer leg

of the right \triangle at the lower left is 12. Since its hypotenuse is 15, its dimensions are 9, 12, 15. The shorter leg of the right \triangle at the lower right is 12, so its dimensions are 12, 16, 20. Since 12+x = 20, x = 8.

Problem 2-4

Clearly, (a,b,c) = (3,3,3) is a solution. In any other solution, at least one fraction must exceed $\frac{1}{3}$, which means one fraction must equal $\frac{1}{2}$. Since $0 < a \le b \le c$, it follows that, in any other solution, a = 2. Now, solve $\frac{1}{b} + \frac{1}{c} = \frac{1}{2}$ in positive integers. This is a simpler version of the original equation. This time, an obvious solution is (b,c) = (4,4). In any other solution, one fraction must exceed $\frac{1}{4}$. That means that one fraction must equal $\frac{1}{3}$. Thus, $\frac{1}{c} = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$. Finally, the positive integer solutions are the ordered triples $\overline{(3,3,3), (2,4,4), (2,3,6)}$.

Problem 2-5

The integers range from 1 through 100. How many 1's are there? There's $2^{1-1} = 1$ of them. How many 2's? There are $2^1 = 2$ of those. Similarly, there are 2^2 3's, 2^3 4's, ..., 2^{98} 99's. The total number of all these integers is $2^0+2^1+2^2+2^3+\ldots+2^{98}=2^{99}-1$. The number of 100's is 2^{99} , so we can pair one 100 with every other integer—and we'll still have one 100 left over. So, if the numbers are ordered from least to greatest, the middle number will be the extra 100.

Problem 2-6

Place the rectangle on the coordinate axes with vertices (0,0), (2015,0), (2015,2012), and (0,2012). The diagonal is $y = \frac{2012}{2015}x$, with $0 \le x \le 2015$. The key observation is that the diagonal enters a new square each time the diagonal crosses a vertical line of the form x = a, with $a = 1, 2, 3, \ldots, 2014$, or a horizontal line of the form y = b, with $b = 1, 2, 3, \ldots$, 2011. (Since the greatest common divisor of 2012 and 2015 is 1, the diagonal never passes through any point with integral coordinates—where the grid lines cross—that is interior to the rectangle.) Start with the unit square that has one vertex at (0,0), then go through another 2014 squares horizontally and 2011 squares vertically. The total number of such squares is 1+2014+2011 = 4026.

Contests written and compiled by Steven R. Conrad & Daniel Flegler